Livepeer Pipelines home page
Search...
⌘K
Support
Dashboard
Dashboard
Search...
Navigation
Reference
Available ComfyUI nodes
Knowledge Base
Technical Documentation
Community
Blog
Pipeline Development
What is a Pipeline?
Remix your first Pipeline
Create your first Pipeline
Application Development
Building in-browser streaming experiences with Pipeline
Build a 1-to-many streaming app with Livepeer Studio
Connect a Livepeer Pipeline to a Livekit Room
Reference
Understanding Pipeline Pricing
Available ComfyUI nodes
Performance recommendations
Local Development Environment for Real-Time AI Video Pipelines with ComfyUI and ComfyStream
Pipeline API Reference
GET
Get Pipeline
POST
Create Pipeline
PATCH
Update Pipeline
DEL
Delete Pipeline
Stream API Reference
POST
Create Stream with Pipeline
PATCH
Control Stream with Pipeline
On this page
Video Input/Output Nodes - REQUIRED FOR ALL PIPELINES
ComfyStream
Analysis Nodes
Depth Anything TensorRT
Segment Anything 2
Florence2
Generation and Control Nodes
LivePortraitKJ
ComfyUI Diffusers
Supporting Nodes
K Sampler
Prompt Control
VAE
IPAdapter
Cache Nodes
ControlNet
Default Nodes
Reference
Available ComfyUI nodes
This guide covers the available ComfyUI nodes for creating real-time video pipelines.
This guide covers the available nodes and requirements for creating real-time video pipelines using ComfyUI with Livepeer.
Video Input/Output Nodes - REQUIRED FOR ALL PIPELINES
ComfyStream
Github Link
Input:
Video stream URL or device ID
Optional configuration parameters
Output:
RGB frame tensor (3, H, W)
Frame metadata (timestamp, index)
Performance Requirements:
Frame processing time: < 5ms
VRAM usage: < 500MB
Buffer size: ≤ 2 frames
Supported formats: RTMP, WebRTC, V4L2
Best Practices:
Set fixed frame rate
Analysis Nodes
Depth Anything TensorRT
Github Link
Input:
RGB frame (3, H, W)
Output:
Depth map (1, H, W)
Performance Requirements:
Inference time: < 20ms
VRAM usage: 2GB
Batch size: 1
Best Practices:
Place early in workflow
Cache results for static scenes
Use lowest viable resolution
Segment Anything 2
(Github Link)[
https://github.com/kijai/ComfyUI-segment-anything-2
]
Input:
RGB frame (3, H, W)
Output:
Segmentation mask (1, H, W)
Performance Requirements:
Inference time: < 30ms
VRAM usage: 3GB
Batch size: 1
Best Practices:
Cache static masks
Use mask erosion for stability
Implement confidence thresholding
Florence2
Github Link
Input:
RGB frame (3, H, W)
Output:
Feature vector (1, 512)
Performance Requirements:
Inference time: < 15ms
VRAM usage: 1GB
Batch size: 1
Best Practices:
Cache embeddings for known references
Use cosine similarity for matching
Implement feature vector normalization
Generation and Control Nodes
LivePortraitKJ
Github Link
Input:
Source image (3, H, W)
Driving frame (3, H, W)
Output:
Animated frame (3, H, W)
Performance Requirements:
Inference time: < 50ms
VRAM usage: 4GB
Batch size: 1
Best Practices:
Pre-process source images
Implement motion smoothing
Cache facial landmarks
ComfyUI Diffusers
(Github Link)[
https://github.com/Limitex/ComfyUI-Diffusers
]
Input:
Conditioning tensor
Latent tensor
Output:
Generated frame (3, H, W)
Performance Requirements:
Inference time: < 50ms
VRAM usage: 4GB
Maximum steps: 20
Best Practices:
Use TensorRT optimization
Implement denoising strength control
Cache conditioning tensors
Supporting Nodes
K Sampler
Input:
Latent tensor
Conditioning
Output:
Sampled latent
Performance Requirements:
Maximum steps: 20
VRAM usage: 2GB
Scheduler: euler_ancestral
Best Practices:
Use adaptive step sizing
Cache conditioning tensors
Prompt Control
Input:
Text prompts
Output:
Conditioning tensors
Performance Requirements:
Processing time: < 5ms
VRAM usage: minimal
Best Practices:
Cache common prompts
Use consistent style tokens
Implement prompt weighting
VAE
Input:
Latent tensor
Output:
RGB frame
Performance Requirements:
Inference time: < 10ms
VRAM usage: 1GB
Tile size: 512
Best Practices:
Use tiling for large frames
Implement half-precision
Cache common latents
IPAdapter
Input:
Reference image
Target tensor
Output:
Conditioned tensor
Performance Requirements:
Inference time: < 20ms
VRAM usage: 2GB
Reference resolution: ≤ 512x512
Best Practices:
Cache reference embeddings
Use consistent weights
Implement cross-attention
Cache Nodes
Input:
Any tensor
Output:
Cached tensor
Performance Requirements:
Access time: < 1ms
Maximum size: 2GB
Cache type: GPU
Best Practices:
Implement LRU eviction
Monitor cache pressure
Clear on scene changes
ControlNet
Input:
Control signal
Target tensor
Output:
Controlled tensor
Performance Requirements:
Inference time: < 30ms
VRAM usage: 2GB
Resolution: ≤ 512
Best Practices:
Use adaptive conditioning
Implement strength scheduling
Cache control signals
Default Nodes
All default nodes that ship with ComfyUI are available. The list below is subject to change.
AlignYourStepsScheduler
BasicGuider
BasicScheduler
BetaSamplingScheduler
Canny
CFGGuider
CheckpointLoader
CheckpointLoaderSimple
CheckpointSave
CLIPAdd
CLIPAttentionMultiply
CLIPLoader
CLIPMergeSimple
CLIPSave
CLIPSetLastLayer
CLIPSubtract
CLIPTextEncode
CLIPTextEncodeControlnet
CLIPTextEncodeFlux
CLIPTextEncodeHunyuanDiT
CLIPTextEncodeSD3
CLIPTextEncodeSDXL
CLIPTextEncodeSDXLRefiner
CLIPVisionEncode
CLIPVisionLoader
ConditioningAverage
ConditioningCombine
ConditioningConcat
ConditioningSetArea
ConditioningSetAreaPercentage
ConditioningSetAreaStrength
ConditioningSetMask
ConditioningSetTimestepRange
ConditioningZeroOut
ControlNetApply
ControlNetApplyAdvanced
ControlNetApplySD3
ControlNetInpaintingAliMamaApply
ControlNetLoader
CropMask
DifferentialDiffusion
DiffControlNetLoader
DiffusersLoader
DisableNoise
DualCFGGuider
DualCLIPLoader
EmptyImage
EmptyLatentAudio
EmptyLatentImage
EmptyMochiLatentVideo
EmptySD3LatentImage
ExponentialScheduler
FeatherMask
FlipSigmas
FluxGuidance
FreeU
FreeU_V2
GITSScheduler
GLIGENLoader
GLIGENTextBoxApply
GrowMask
HypernetworkLoader
HyperTile
ImageBatch
ImageBlend
ImageBlur
ImageCompositeMasked
ImageColorToMask
ImageCrop
ImageFromBatch
ImageInvert
ImageOnlyCheckpointLoader
ImageOnlyCheckpointSave
ImagePadForOutpaint
ImageQuantize
ImageScale
ImageScaleBy
ImageScaleToTotalPixels
ImageSharpen
ImageToMask
ImageUpscaleWithModel
InpaintModelConditioning
InstructPixToPixConditioning
InvertMask
JoinImageWithAlpha
KarrasScheduler
KSampler
KSamplerAdvanced
KSamplerSelect
LaplaceScheduler
LatentAdd
LatentApplyOperation
LatentApplyOperationCFG
LatentBatch
LatentBatchSeedBehavior
LatentBlend
LatentComposite
LatentCompositeMasked
LatentCrop
LatentFlip
LatentFromBatch
LatentInterpolate
LatentMultiply
LatentOperationSharpen
LatentOperationTonemapReinhard
LatentRotate
LatentSubtract
LatentUpscale
LatentUpscaleBy
LoadAudio
LoadImage
LoadImageMask
LoadLatent
LoraLoader
LoraLoaderModelOnly
LoraSave
MaskComposite
MaskToImage
ModelAdd
ModelMergeBlocks
ModelMergeFlux1
ModelMergeSD1
ModelMergeSD2
ModelMergeSD35_Large
ModelMergeSD3_2B
ModelMergeSDXL
ModelMergeSimple
ModelSamplingAuraFlow
ModelSamplingContinuousEDM
ModelSamplingContinuousV
ModelSamplingDiscrete
ModelSamplingFlux
ModelSamplingSD3
ModelSamplingStableCascade
ModelSave
ModelSubtract
Morphology
PatchModelAddDownscale
PerpNeg
PerpNegGuider
PerturbedAttentionGuidance
PhotoMakerEncode
PhotoMakerLoader
PolyexponentialScheduler
PorterDuffImageComposite
PreviewAudio
PreviewImage
RandomNoise
RebatchImages
RebatchLatents
RepeatImageBatch
RepeatLatentBatch
RescaleCFG
SamplerCustom
SamplerCustomAdvanced
SamplerDPMAdaptative
SamplerDPMPP_2M_SDE
SamplerDPMPP_2S_Ancestral
SamplerDPMPP_3M_SDE
SamplerDPMPP_SDE
SamplerEulerAncestral
SamplerEulerAncestralCFGPP
SamplerEulerCFGpp
SamplerLCMUpscale
SamplerLMS
SaveAnimatedPNG
SaveAnimatedWEBP
SaveAudio
SaveImage
SaveLatent
SD_4XUpscale_Conditioning
SDTurboScheduler
SelfAttentionGuidance
SetLatentNoiseMask
SetUnionControlNetType
SkipLayerGuidanceSD3
SolidMask
SplitImageWithAlpha
SplitSigmas
SplitSigmasDenoise
StableCascade_EmptyLatentImage
StableCascade_StageB_Conditioning
StableCascade_StageC_VAEEncode
StableCascade_SuperResolutionControlnet
StableZero123_Conditioning
StableZero123_Conditioning_Batched
StyleModelApply
StyleModelLoader
SV3D_Conditioning
SVD_img2vid_Conditioning
ThresholdMask
TomePatchModel
TorchCompileModel
TripleCLIPLoader
unCLIPCheckpointLoader
unCLIPConditioning
UNETLoader
UNetCrossAttentionMultiply
UNetSelfAttentionMultiply
UNetTemporalAttentionMultiply
UpscaleModelLoader
VAEDecode
VAEDecodeAudio
VAEDecodeTiled
VAEEncode
VAEEncodeAudio
VAEEncodeForInpaint
VAEEncodeTiled
VAESave
VideoLinearCFGGuidance
VideoTriangleCFGGuidance
VPScheduler
WebcamCapture
Understanding Pipeline Pricing
Performance recommendations
Assistant
Responses are generated using AI and may contain mistakes.